O.P.Code: 16ME307

R16

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year II Semester Supplementary Examinations May/June-2024 ENGINEERING THERMODYNAMICS

(Mechanical Engineering)

/T\:-		(Mechanical Engineering)			
111	ne	e: 3 Hours	Max.	Ma	rks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	- 1	a What is meant by property of a substance? Distinguish between	CO ₁	L1	6M
		intensive property and extensive property.			0171
]	State the differences between a closed system and an open system.	CO1	L2	6M
		OR			OIVI
2		Compare and contrast between heat and work.	CO1	L3	12M
		UNIT-II	COI	LIS	12111
3	2	State the First Law of Thermodynamics. Prove that the internal energy is	CO2	Т 1	CNT
		a property of a system.	COZ	L1	6 M
	ŀ	A steam turbine operates under steady flow conditions. Steam with an	CO2	L2	CM
		enthalpy of 2786 kJ/kg enters the turbine and leaves with an enthalpy of	COZ	1.2	6 M
		2513 kJ/kg. Heat is lost to the surroundings at the rate of 5.30 kJ/sec. If			
		the rate of steam flowing though the turbine is 0.40 kg/sec, find the			
		power output of the turbine.			
		OR			
4	a	Describe the different modes through which energy is stored in a system.	CO ₂	L2	6M
	b	A system operates on a thermodynamic cycle having four processes. The		L2	6M
		heat transfers during the four processes are $O_1 = 60 \text{ kJ}$. $O_2 = -40 \text{ kJ}$	002		OIVI
		Q_3 = 15 kJ, and Q_4 =-20 kJ. Calculate the <u>net work done</u> by the system.			
		UNIT-III			
5	a	Discuss the limitations of First Law of Thermodyanamics.	CO3	L2	6M
	b	State and explain Second Law of Thermodynamics.	CO3	L2	6M
		OR	COS	Liz	UIVI
6	a	State the equivalence of Clausius and Kelvin statement of Second Law.	CO3	L1	6M
	b	An inventor claims to have developed an heat engine that takes in 105	CO3	L ₂	6M
		MJ at a temperature of 400 K, rejects 42 MJ at a temperature of 200 K,	CO3		OIAT
		and delivers 15 kWh of mechanical work. Prove he is incorrect.			
		UNIT-IV			
7	a	Recall Van der Walls equation of state. How does it differ from the ideal	COA	T 1	CM
		gas equation of state.	CO4	L1	6M
	b	Describe Dalton's law of partial pressures.	CO4	L2	6M
		OR	CO4		OIVI
8		A mass of 0.25 kg of an ideal gas has a pressure of 300 kPa, at a	CO4	1.2	12M
		temperature of 80 °C and a volume of 0.07 m ³ . The gas undergoes an	004		12111
		irreversible adiabatic process to final pressure of 300 kPa and final			
		volume of 0.1 m ² , during which the work done on the gas is 25 kJ. Find			
		Cp, Cv of the gas and the increase in the gas entropy.			
		UNIT-V			
9	a	Drove new diagrams and T. G. I'	CO5	L1	6M
	b	What is Israel Themselver CC:	CO5	L1	6M
		OR	-03	11	0141
10		Draw p-v diagram and T-S diagram for Diesel cycle. Derive the	CO5	T.1	12M
		equation for thermal efficiency of the cycle.		4.1	TAIAT
		*** END ***			